Local Analysis of Local Discontinuous Galerkin Method for the Time-Dependent Singularly Perturbed Problem

نویسندگان

  • Yao Cheng
  • Feng Zhang
  • Qiang Zhang
چکیده

In this paper we will present the local stability analysis and local error estimate for the local discontinuous Galerkin (LDG)method, when solving the time-dependent singularly perturbed problems in one dimensional spacewith a stationary outflow boundary layer. Based on a general framework on the local stability, we obtain the optimal error estimate out of the local subdomain, which is nearby the outflow boundary point and has the width of O(h log(1/h)), for the semi-discrete LDG scheme and the fully-discrete LDG scheme with the second order explicit Runge–Kutta time-marching. Here h is the maximum mesh length. The numerical experiments are given also.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local analysis of discontinuous Galerkin methods applied to singularly perturbed problems

We analyze existing discontinuous Galerkin methods on quasi-uniform meshes for singularly perturbed problems. We prove weighted L2 error estimates. We use the weighted estimates to prove L2 error estimates in regions where the solution is smooth. We also prove pointwise estimates in these regions.

متن کامل

An Optimal Uniform a Priori Error Estimate for an Unsteady Singularly Perturbed Problem

We focus ourselves on the analysis of the solution of unsteady linear 2D singularly perturbed convection–diffusion equation. This type of equation can be considered as simplified model problem to many important problems, especially to Navier– Stokes equations. The space discretization of such a problem is a difficult task and it stimulated development of many stabilization methods (e.g. streaml...

متن کامل

Weighted Error Estimates of the Continuous Interior Penalty Method for Singularly Perturbed Problems

In this paper we analyze local properties of the Continuous Interior Penalty (CIP) Method for a model convection-dominated singularly perturbed convection-diffusion problem. We show weighted a priori error estimates, where the weight function exponentially decays outside the subdomain of interest. This result shows that locally, the CIP method is comparable to the Streamline Diffusion (SD) or t...

متن کامل

Local Anaylsis of Discontinuous Galerkin Methods Applied to Singularly Perturbed Problems

We analyze existing discontinuous Galerkin methods on quasiuniform meshes for singularly perturbed problems. We prove weighted L2 error estimates. We use the weighted estimates to prove L2 error estimates in regions where the solution is smooth. We also prove pointwise estimates in these regions.

متن کامل

A Numerical Study of Uniform Superconvergence of Ldg Method for Solving Singularly Perturbed Problems

In this paper, we consider the local discontinuous Galerkin method (LDG) for solving singularly perturbed convection-diffusion problems in oneand two-dimensional settings. The existence and uniqueness of the LDG solutions are verified. Numerical experiments demonstrate that it seems impossible to obtain uniform superconvergence for numerical fluxes under uniform meshes. Thanks to the implementa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2015